Protection des plantes, tradition et macération d’ortie
Protection des plantes, tradition et macération d’ortie*
Édition 2012

Dossier réalisé par Jean-Louis Bernard (Académie d’agriculture de France), Jacques My (UPJ) et Daniel Veschambre (conseil scientifique de la SNHF)

* Ce dossier est essentiellement consacré aux macérations d’ortie (dans le texte, c’est le terme purin, couramment utilisé pour ce produit, qui sera utilisé). Toutefois, dans la synthèse des résultats, certaines références sont faites à d’autres purins de plantes, notamment quand ceux-ci entrent dans le protocole expérimental.
Protection des plantes, tradition et macération d’ortie

SOMMAIRE

Introduction ... 4

Purin d’ortie en protection des cultures:
une recette traditionnelle? ... 4

Littérature agronomique et mentions faites
de l’ortie pour la protection des cultures... 5

Quel est donc le point de départ de cette « recette » ? ... 8

La mise au point d’un cadre réglementaire ... 9

Résultats de 15 ans d’expérimentation
sur les purins de plantes (synthèse).. 10

• Au chapitre des maladies .. 10
• Concernant les ravageurs ... 10
• Au titre des effets liés à la nutrition des plantes .. 11
• 15 ans d’expérimentation sur les purins de plantes .. 11
 - Types de purins et panorama des essais .. 11
 - Méthodologie .. 12
 - Essais d’efficacité sur les pathogènes fongiques .. 13
 - Essais d’efficacité sur bactéries .. 16
 - Essais d’efficacité sur les ravageurs .. 17
 - Essais d’efficacité en tant que fertilisants ou biostimulants 21
 - Conclusion ... 22

Fiche technique purin d’ortie (J3C Agri) .. 24

Bibliographie ... 25

• Bibliographie étrangère ... 25
• Bibliographie française ... 25
En 2012, comme chaque année, le Conseil Scientifique de la SNHF a établi un dossier sur une question scientifique et technique. Il s'est interrogé sur ce qui est aujourd'hui démontré expérimentalement à propos des effets des macérations (communément appelées purin) d'ortie.

Ce dossier synthétise des résultats d'expérimentations réalisées, certaines d'entre elles impliquent d'autres macérations mais qui ne font pas l'objet ici d'interprétations.

Concernant les macérations d'ortie (purin d'ortie), aucun résultat scientifique ne permet de conclure à ce jour à un effet positif ou négatif.

Introduction

Purin d'ortie en protection des cultures : une recette traditionnelle ?

Au début des années 2000, divers « fabricants » désireux de commercialiser du purin d'ortie ont revendiqué pour cette préparation une origine ancestrale, arguant du fait que l'agriculture utilisait traditionnellement cette solution, en particulier pour ses propriétés aphicides.
Il est vrai que, dès l’Antiquité, divers végétaux ont été cités par des agronomes comme précieux pour détruire ou repousser certains ravageurs des cultures ou des grains récoltés. On trouve ainsi cités :

- Les feuilles desséchées d’olivier sauvage destinées à être mélées à l’enduit des parois des silos de stockage des céréales.
- Les fruits du fenugrec, les feuilles d’absinthe, d’inule ou de coriandre, broyés et incorporés à la masse des grains en conservation.
- La décoction du cornichon d’âne (*Echallium elaterium*) dont on aspergeait les objets à protéger des rongeurs.
- Les fumigations toxiques à base d’if, les copeaux du laurier-rose…
- Les appâts à base d’hellébore destinés à tuer les rats.
- Le jus de sedum pour faire tremper les semences avant mise en terre, etc.

Dans le Haut Moyen Âge, si l’on accorde à l’ortie certaines propriétés médicales, on ne trouve pas non plus mention de son emploi pour la protection des cultures, que l’on se réfère à la vaste pharmacopée d’Hildegarde de Bingen (*Le livre des subtilités des créatures divines, Les causes et les remèdes*) ou à l’œuvre de l’agronome andalou Ibn Al Awam.
Dans la période suivante, les ouvrages agricoles majeurs produits en Angleterre par Walter de Henley ou John Evelyn, en Italie par Pierre de Crescens ou Agostino Gallo, en France par Charles Estienne, Olivier de Serres ou Jean-Baptiste de la Quintinie sont également muets.

Les auteurs du XVIIIe siècle qui commencent à utiliser les méthodes expérimentales (Réaumur, Schabol…) ne sont pas plus diserts sur le sujet, pas plus que les expérimentateurs de la fin du XIXe qui testent systématiquement les substances à vertu insecticide supposée, comme C.V. Riley aux États-Unis. À cette époque, la nicotine et le pyrèthre commencent à être conseillés, mais rien ne transparaît dans les textes au sujet du purin d’ortie. Il en sera de même dans des ouvrages conçus pour un vaste public à l’exemple du Dictionnaire d’Agriculture de l’Abbé Migne (1862) ou du Larousse agricole de 1922.

La volumineuse synthèse sur les produits de protection des plantes dressée par le chimiste Emmanuel Bourcart en 1910 ne mentionne pas l’ortie. Pas plus qu’en 1935 le travail de Balachowsky A. et Mesnil L. (Les insectes nuisibles aux plantes cultivées), très prolixes par ailleurs au sujet des propriétés insecticides de la nicotine, du Derris (roténone), du pyrèthre, du Quassia amara, de l’hellébore (Veratrum sp.)… Quant à l’ouvrage de référence d’Émile Perrot (Matières premières usuelles du règne végétal: thérapeutique, hygiène, industrie de 1943-1944), s’il mentionne les propriétés de la grande ortie (Urtica dioica L.) et de l’ortie brûlante (U. urens L.), c’est pour des usages médicaux, alimentaires ou textiles, sans mention d’un effet quelconque sur les arthropodes ravageurs ou les maladies des plantes. Les ancêtres de l’Index phytosanitaire, à savoir le Guide pratique pour la défense sanitaire des végétaux (Collectif, FDGPC, 2e éd. 1938 et 3e éd. 1944) sont, eux aussi, muets.
Plus près de nous, et même si certains ouvrages récents mentionnent les substances irritantes ou toxiques contenues dans les organes végétatifs de diverses espèces d’orties, aucun ne fait mention des propriétés insecticides ou fongicides de préparations quelconques dont elles seraient la base:

Cette synthèse rapide, mais néanmoins assez large, montre que la littérature classique, un assez grand nombre d’ouvrages à vocation scientifique et différentes sources d’information de large vulgarisation ne font aucune mention de propriétés positives de l’ortie en matière de protection des plantes.

Il est donc hautement vraisemblable que le purin d’ortie est une « invention » récente, ou bien alors qu’une telle trouvaille figurerait dans des travaux peu notoires qui auraient échappé à la vigilance des auteurs consultés.
Suite au recueil de diverses sources orales, il paraît vraisemblable que le purin d’ortie comme divers autres purins, macérations, décoctions… font partie de la cohorte des préparations artisanales utilisées de façon ponctuelle par certains jardiniers amateurs. Ces préparations sont utilisées en arrosage ou en projection sur le feuillage des plantes d’ornement ou des légumes. Elles sont considérées comme procurant un aspect « plus vert » aux plantes traitées, assimilées à un effet fertilisant, voire conduisant à une « meilleure santé » des végétaux qui les reçoivent. Ces préparations ont toutes en commun de ne pas être caractérisées au sens donné à ce terme par l’administration et de n’avoir fait l’objet d’aucun contrôle préalable en regard des propriétés revendiquées.

Les recommandations d’emploi de préparations à base d’ortie dioïque (*U. dioica*) semblent avoir débuté dans le Maine-et-Loire à partir des avis donnés par Jean-Claude Chevalard, autodidacte entreprenant qui se décrit lui-même comme un « orticien ». De préparations faites à la ferme pour des besoins locaux, le purin d’ortie et plusieurs autres concoctés avec divers végétaux (prêle, fougère…) sont vite devenus objets de commerce à partir de ce qui ressemblait déjà à une petite industrie.

Différents courriers de mise en garde ont alors été adressés par la DGCCRF (Direction générale de la consommation, de la concurrence et de la répression des fraudes) aux contrevenants, les avisant du fait qu’un produit non normalisé, n’ayant fait l’objet d’aucun contrôle ni d’aucune demande de commercialisation comme fertilisant ou produit phytosanitaire, ne pouvait être mis en marché. Ces envois de courrier sont attestés en 2002 (in *Purin d’Ortie & Compagnie*).

L’obligation de non-publicité et les demandes de retrait des allégations de propriétés phytosanitaires du purin d’ortie ont été ressenties comme un nouvel interdit imposé par l’État, voire une provocation, qui a fait les choux gras des blogs alternatifs. Le sujet est brutalement venu sur la place publique en 2006 avec un événement sans rapport direct, à savoir le contact pris par les « Fraudes » avec un particulier qui faisait la promotion d’huiles essentielles destinées à être injectées dans le tronc d’arbres d’ornement, au prétexte de les guérir des maladies diverses qui les affligeaient. En quelques jours, cette opération banale, matérialisée par une simple audition, a déclenché une tempête médiatique animée par différentes associations de protection de la nature, de partisans de l’agriculture biologique ou de tenants des solutions dites naturelles. En quelques semaines, le mouvement a pris la tournure d’une véritable crise qui a pris de court les services du ministère de l’Agriculture. Beaucoup de journaux, même les plus sérieux, ont alors véhiculé des informations erronées sur les médicaments « naturels » et critiqué le bien-fondé des règles administratives. Simultanément, un véritable groupe de pression a semblé se former à l’Assemblée nationale avec plus de 60 questions de parlementaires au gouvernement… Cet épisode a été parfois appelé dans la presse la « guerre de l’ortie ».

En parallèle à ce tumulte, des discussions se sont poursuivies entre les représentants des ministères concernés et les partisans de ces préparations sans statut légal qui, bien que supposées peu ou pas dangereuses, ne pouvaient être conseillées, cédées ou vendues sans aucun contrôle. Certains rappelant à juste titre que les décoctions de feuilles de tabac, de quassia, les extraits d’aconit, d’hellebore… qui, bien qu’ayant dans le passé fait preuve de leur intérêt phytosanitaire, avaient aussi démontré au passage des risques potentiels et parfois avérés, tant pour la santé des utilisateurs que pour le consommateur ou l’environnement.

Quel est donc le point de départ de cette « recette » ?
Aujourd'hui, le purin d'ortie représente l'élément emblématique d'une catégorie de moyens de protection des plantes dans laquelle sont rassemblés divers purins végétaux. On les range sous l'appellation de « préparations naturelles peu préoccupantes à usage phytopharmaceutique » (PNPP). Cette catégorie fait l'objet d'une réglementation française spécifique et récente, appelée néanmoins à évoluer rapidement suite à la mise en œuvre du règlement européen 1107/2009 concernant la mise sur le marché des produits phytopharmaceutiques.

Cette réglementation avait été nécessaire puisque la directive 91/414 renvoyait au principe de subsidiarité la gestion de ce type de produit.

Deux textes réglementaires ont été ainsi publiés :

• Décret n° 2009-792 du 23 juin 2009 (JORF du 25 juin 2009)
Ce décret contient deux éléments essentiels :
- Une définition des PNPP : élaborées exclusivement à partir d'éléments naturels non GM ; obtenues par un procédé accessible à tout utilisateur final ; traitées uniquement par des moyens manuels, mécaniques ou gravitationnels, par dissolution dans l'eau, par flottation, par extraction par l'eau, par distillation à la vapeur ou par chauffage uniquement pour éliminer l'eau.
- Une distinction entre la préparation à la ferme et la préparation commerciale : il n'y a pas d'autorisation quand la PNPP est préparée par l'utilisateur lui-même (seule une inscription des substances de départ sur une liste officielle est nécessaire). Lorsqu'il y a mise sur le marché d'une PNPP, une autorisation par le ministère de l'Agriculture est obligatoire après avis éventuel de l'Afssa (actuellement Anses).

• Arrêté du 18 avril 2011 (JORF du 28 avril) autorisant la mise sur le marché du purin d'ortie fabriqué selon une recette définie, pour un emploi immédiat ou après conservation (décrite), pulvérisé sur le feuillage ou au sol, pour les usages suivants :
 - Fongicide, notamment contre mildiou.
 - Insecticide, principalement contre pucerons et acariens.
 - Activateur ou régulateur de croissance.

Ces deux textes ont été complétés par une note de service DGAL en date du 18 avril 2011 fixant la liste des plantes utilisables (comestibles et non comestibles) pour fabriquer des purins.

Ces trois textes constituent une réglementation grandement simplifiée par rapport à celle qui a cours pour les produits phytosanitaires issus de la chimie, qu'ils soient de synthèse ou non. En particulier, selon la procédure en vigueur, la demande d'autorisation de mise sur le marché d'une PNPP ne nécessite pas de dossier toxicologique ni éco-toxicologique, ni même de prouver son efficacité par des essais officiels et des essais officiellement reconnus. La mention de la nature du ou des principes actifs n'est pas non plus nécessaire et les composants éventuellement actifs ne sont pas évalués. Seule la mention de la plante ou des plantes utilisées dans la préparation est obligatoire.

Avec le nouveau règlement européen 1107/2009 qui introduit dans son texte les notions de « substances de base » et de « substances à faible risque » (articles 23 et 22), les purins se retrouvent couverts par la réglementation globale des produits phytosanitaires. C'est ainsi que le décret qui concernera la mise en œuvre de ce règlement au plan national (en cours d'élaboration) comportera des articles dédiés aux PNPP.

Mais ce qui est certain, c'est que dans ce nouveau cadre, ces produits, dès lors qu'ils sont commercialisés, seront soumis à une évaluation (certes adaptée et simplifiée) de leurs impacts toxicologiques et éco-toxicologiques, mais aussi de leur efficacité.

1 Génétiquement modifiés
2 Agence française de sécurité sanitaire des aliments
3 Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail
4 Direction générale de l'alimentation
Au cours des 15 dernières années, le réseau Ctifl\(^1\) - Stations régionales Fruits et Légumes, l'IFV\(^2\) et l'Iteipmai\(^3\), ont réalisé de nombreux essais avec des purins divers, frais ou du commerce, sur plusieurs espèces fruitières, légumières et condimentaires, ainsi qu'en viticulture.

Ces travaux concernaient la recherche d'effets fertilisants, antifongiques, antibactériens, anti-insectes et « biostimulant » de purins de plantes, l'ortie n'étant pas la seule espèce concernée. Plus de cinquante essais ont fait l'objet d'analyses des résultats et de comptes-rendus, dont la plupart ont été examinés pour donner lieu aux commentaires ci-dessous.

Dans le même temps, divers travaux réalisés dans plusieurs pays étrangers avec des objectifs analogues ont fait l'objet de quelques publications internationales, sur plusieurs espèces de fruits, de légumes et de grande culture.

Les purins de plantes étant souvent recommandés en agriculture biologique, en France, une partie des essais a été réalisée sur des parcelles reconverties.

AU CHAPITRE DES MALADIES

À la fin des années 1990, dans le Gard, les premiers essais sur mildiou et black-rot de la vigne ont suscité un intérêt pour d'autres maladies et sur d'autres productions. En effet, « une efficacité moyenne des purins (préle et ortie) dans un contexte de mildiou normal » permettait d'envisager d'associer le purin au cuivre tout en sous-dosant ce dernier.

En revanche, de nombreux autres essais réalisés en France sur rouille, oïdium et mildiou de plusieurs légumes (artichaut, melon, laitue, estragon, concombre, tomate, pomme de terre primeur) n'ont pas permis de mettre en évidence une quelconque efficacité des purins de plantes. Par exemple, sur le mildiou de la laitue, les auteurs concluent que « la modalité purins de plantes présente quasiment les mêmes résultats que le témoin. Son efficacité sur mildiou est apparemment nulle ».

Seuls, des essais réalisés au Népal ont montré une efficacité sur oïdium du concombre et *Alternaria* du radis. D'autre part, sur la bactériose du noyer, « aucun effet significatif n'a pu être mis en évidence ».

CONCERNANT LES RAVAGEURS

Les essais sur taupins de la pomme de terre, réalisés à partir de l'année 1999 dans le Gard, ont suscité eux aussi un vif intérêt, puisqu'en situation de forte infestation, le purin de fougère a montré une efficacité intéressante, sinon satisfaisante et régulière, pendant plusieurs années. Cependant, pour des essais répétés dans d'autres régions de production, ces résultats n'ont pas pu être reproduits, ni sur pomme de terre, ni sur d'autres cultures (carotte, betterave, haricot, laitue).

D'autres essais pour protéger les fruits et les légumes contre des ravageurs - pucerons, limaces, altises - ont été réalisés. Les effets s'avèrent limités, laissant entrevoir au mieux un léger retard d'infestation pour les pucerons, qui s'estompe rapidement sous l'action des auxiliaires naturels. Aucun effet répulsif sur les limaces ou les altises n'a pu être décelé.

1. Centre Technique Interprofessionnel des Fruits et Légumes
2. Institut Français de la Vigne et du Vin
3. Institut Technique Interprofessionnel des Plantes à Parfum, Médicinales et Aromatiques

Résultats de 15 ans d’expérimentation sur les purins de plantes (synthèse)

Fougère *Matteuccia struthiopteris* - © F. Pernel
AU TITRE DES EFFETS LIÉS À LA NUTRITION DES PLANTES

Considérés isolément, les différents purins soumis à l’analyse montrent un très faible contenu en azote. La composition des purins de plantes pris isolément montre qu’ils contiennent très peu d’azote facilement assimilable par les plantes. En France, aucun effet significatif n’est observé dans les essais réalisés sur chou-fleur, poireau, courgette, aubergine, melon et fraisier, par pralinage de jeunes plants ou refertilisation des cultures par pulvérisation ou goutte-à-goutte.

Au final, il est surprenant de constater l’écart entre les effets mesurés – nuls, ténus et/ou aléatoires – et les prescriptions sur l’emploi des purins.

On notera d’ailleurs que les expérimentations professionnelles s’orientent désormais prioritairement vers d’autres types de substances de protection des cultures pour améliorer la nutrition des végétaux (stimulateurs de développement des plantes), pour améliorer la protection des cultures comme les stimulateurs de défense naturelle (SDN) et, bien sûr, vers d’autres méthodes alternatives aux produits chimiques de synthèse, telles que : les variétés résistantes aux maladies, le greffage, les barrières physiques (filet, film, argile), les auxiliaires naturels ou introduits, le piégeage massif avec phéromone, la confusion sexuelle…

15 ANS D’EXPÉRIMENTATION SUR LES PURINS DE PLANTES

Types de purins et panorama des essais

Au cours des 15 dernières années, le réseau Ctifl⁴ - Stations régionales Fruits et Légumes, l’IFV⁵ et l’Iteipmai ⁶ ont réalisé de nombreux essais (Tableau I) avec des purins issus d’espèces diverses, frais ou du commerce, sur plusieurs espèces fruitières, légumières, condimentaires et en viticulture.

Tableau I: Récapitulatif des travaux d’expérimentation réalisés en France ces 20 dernières années

<table>
<thead>
<tr>
<th>Type de purin</th>
<th>Principe actif (supposé)</th>
<th>Espèces cultivées</th>
<th>Objectifs/cibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ail</td>
<td>Allicine (?)</td>
<td>Pommier</td>
<td>Pucerons</td>
</tr>
<tr>
<td>Consoude</td>
<td>Allantoïde, azote</td>
<td>Aubergine, estragon, melon, menthe</td>
<td>Fertilisation foliaire, pucerons, rouille</td>
</tr>
<tr>
<td>Fougère</td>
<td>Acides gallique et acétique, tanin, potassium</td>
<td>Betterave rouge, carotte, radis, courgette, haricot, laitue, pomme de terre, pommier, pêcher</td>
<td>Taupin, altise, pucerons, limaces</td>
</tr>
<tr>
<td>Menthe</td>
<td>?</td>
<td>Pommier</td>
<td>Pucerons</td>
</tr>
<tr>
<td>Ortie</td>
<td>Acide formique, azote</td>
<td>Artichaut, chou-fleur, courgette, estragon, fraisier, laitue, melon, menthe, poireau, pomme de terre, tomate, pêcher, pommier, prunier, vigne</td>
<td>Biostimulant, fertilisation, mildiou, pucerons, oidium, black-rot</td>
</tr>
<tr>
<td>Prêle</td>
<td>Acide nicotinique</td>
<td>Ail, artichaut, concombre, courgette, estragon, haricot, laitue, melon, menthe, pomme de terre, tomate, noyer, pêcher, pommier, vigne</td>
<td>Rouille, oidium, mildiou, pucerons, bactériose, black-rot</td>
</tr>
</tbody>
</table>

⁴ Centre Technique Interprofessionnel des Fruits et Légumes
⁵ Institut Français de la Vigne et du Vin
⁶ Institut Technique Interprofessionnel des Plantes à Parfum, Médicinales et Aromatiques
Dans le même temps, divers travaux ont été réalisés dans plusieurs pays étrangers et ont fait l’objet de quelques publications internationales, sur plusieurs espèces de fruits et légumes et de grande culture, avec des objectifs analogues.

Méthodologie

Il s’agit d’essais destinés à apprécier l’efficacité des préparations. Les dispositifs sont généralement en blocs randomisés, afin de rechercher si les différences entre les modalités comparées sont significatives. Les essais comportent pour la plupart un témoin non traité ou traité par de l’eau, permettant d’évaluer l’infestation naturelle quand la cible est un bioagresseur. En revanche, le témoin de référence « chimique » n’est pas toujours présent, notamment lorsque l’essai est dans une parcelle conduite en agriculture biologique (excepté lors de comparaisons avec le cuivre, le soufre, l’huile de neem, la roténone ou un pyrèthre).

Certains essais (Tableau II) ont été réalisés selon les bonnes pratiques d’expérimentations (BPE), lorsque la structure est en mesure de réaliser des essais officiellement reconnus (EOR), dont l’agrément est contrôlé par le Comité français d’accréditation (Cofrac). Dans ce cas, les essais sont conduits selon des méthodes standards, élaborées dans le cadre de la Commission des Essais Biologiques (CEB) de l’Association Française de Protection des Plantes.

Pour les fruits et légumes, les essais ont fait l’objet d’une concertation nationale quant aux méthodes d’observation et de comptage. Cependant, la comparaison des essais n’est pas possible du fait que, selon les essais, les espèces et les modalités testées sont différentes.

Tableau II : Situation des essais réalisés en France : organismes

<table>
<thead>
<tr>
<th>Organismes</th>
<th>Département</th>
<th>Parcelles ordinaires</th>
<th>Parcelles reconversions AB*</th>
<th>Agrément EOR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPEL</td>
<td>17</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airel** / Ctifl</td>
<td>47</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprel / Ctifl</td>
<td>84</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arefe / Ctifl</td>
<td>55</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chambre d’Agriculture du Gard</td>
<td>30</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creysse / Ctifl</td>
<td>46</td>
<td>oui</td>
<td></td>
<td>oui</td>
</tr>
<tr>
<td>Ctifl centre Carquefou / Arelpal</td>
<td>44</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Ctifl centre Lanxade</td>
<td>24</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Grab</td>
<td>84</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITF***</td>
<td>30</td>
<td>oui</td>
<td></td>
<td>oui</td>
</tr>
<tr>
<td>Itiepmai</td>
<td>26</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secl / Ctifl</td>
<td>22</td>
<td>oui</td>
<td></td>
<td>oui</td>
</tr>
<tr>
<td>Serail / Ctifl</td>
<td>69</td>
<td>oui</td>
<td></td>
<td>oui</td>
</tr>
<tr>
<td>Sica Centrex</td>
<td>66</td>
<td>oui</td>
<td></td>
<td>oui</td>
</tr>
<tr>
<td>Sileban / Ctifl</td>
<td>50</td>
<td>oui</td>
<td></td>
<td>oui</td>
</tr>
</tbody>
</table>

* à l’époque des essais cités
** devenu Invenio
*** devenu IFV

7 Non homologuée en France
8 Non homologuée en France
Essais d'efficacité sur les pathogènes fongiques

Les purins testés ont été réalisés à partir de prêle, consoude ou ortie pour tenter de protéger diverses espèces de trois types de maladies.

• Rouilles
Les essais ont porté sur les rouilles de l'ail (10), de l'estragon et de la menthe (24) avec des préparations du commerce à base de prêle ou de prêle + ortie + consoude. Les essais n'ont pas montré d'efficacité significative par rapport au témoin, que ce soit en situation de faible ou de forte pression de la maladie.

Exemple de résultat: sur estragon (Itépmiai en 2005)

Tableau III: Modalités comparées

<table>
<thead>
<tr>
<th>Produit commercial</th>
<th>Composition</th>
<th>Dose/ha</th>
<th>Fréquence d'application</th>
<th>Nombre d'applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milsana</td>
<td>Extrait de renouée sakhaline</td>
<td>2 l</td>
<td>7 à 10 jours</td>
<td>7</td>
</tr>
<tr>
<td>Chevalard</td>
<td>Extraits fermentés de prêle, ortie, consoude</td>
<td>20 l</td>
<td>21 jours</td>
<td>4</td>
</tr>
<tr>
<td>Ortiva (réf. chimique)</td>
<td>Azoxy-strobine</td>
<td>0.8 l</td>
<td>15 jours</td>
<td>2</td>
</tr>
</tbody>
</table>

Graphique 1: Fréquence d'attaque de rouille sur estragon (note échelle de 1 à 5)

Conclusion des auteurs: « pas d'efficacité [...] des extraits fermentés de plantes utilisés pour la protection des cultures d'estragon face aux attaques de rouille ».

• Oïdium
Les essais ont porté sur l'oïdium de l'artichaut (23) et du melon (29) pour comparer l'effet de préparations du commerce à base de prêle et de prêle + ortie + consoude appliquées en préventif. Là aussi, les purins ne montrent aucune efficacité, que ce soit en pourcentage de feuilles attaquées ou en intensité d'attaque (% de surface).

Les auteurs concluent à « une efficacité nulle » des purins utilisés.

En revanche, le soufre donne des résultats significativement meilleurs que le témoin et assure une protection suffisante.

• Mildiou, black-rot
De nombreux essais ont été effectués sur les mildious du concombre (25, 26), de la laitue (28, 42, 43), de la tomate (21), de la pomme de terre (17, 48) et de la vigne (33), ainsi que sur le black-rot de la vigne (33), avec des préparations du commerce à base de prêle, d'ortie, de prêle + ortie et de prêle + ortie + consoude.

L'intérêt de ces essais réside notamment dans le fait que les niveaux d'attaque sont variés. En effet, il est parfois souligné que les purins n'ont d'effet que lorsque les pressions de bioagresseurs sont relativement faibles. Cependant, dans les cas de faible pression parasitaire, il est difficile de mettre en évidence des différences significatives car la précision des essais est faible.

9 Les numéros renvoient aux références bibliographiques en annexe II
Exemple de résultats sur laitue avec une attaque moyenne

Tableau IV : Modalités comparées sur laitue au Grab en 2003

<table>
<thead>
<tr>
<th>Spécialité commercial</th>
<th>Société</th>
<th>Matière(s) Actives(s)</th>
<th>Dose / hl</th>
<th>Dose / Ha</th>
<th>Dose Cuivre / Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin sec</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>FERTICUIVRE</td>
<td>UFAB</td>
<td>Cuivre (5,4 %, oxychlorure et sulfate) + algues + lithothamne + extraits de plantes</td>
<td>1 kg/hl</td>
<td>5 kg/ha</td>
<td>270 g/ha</td>
</tr>
<tr>
<td>- CUVROL + For Mn 48</td>
<td>Samabiol</td>
<td>Cuivre (18 %, sulfate) + oligo-éléments (Bore, Molybdène, Zinc) - Manganèse (4 %), Cuivre (1,5%), Bore (0,5 %), Zinc (1,5%)</td>
<td>200 g/hl</td>
<td>1 kg/ha</td>
<td>180 g/ha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ 500 cc/hl</td>
<td>1 kg/ha</td>
<td>2.5 l/ha</td>
<td>+ 37 g/ha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 g/ha</td>
<td>37 g/ha</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>STIMULASE</td>
<td>Biophytec</td>
<td>Extrait de Trichoderma</td>
<td>200 cc/hl</td>
<td>1 l/ha</td>
<td>/</td>
</tr>
<tr>
<td>Purins de plantes</td>
<td>Augé</td>
<td>Mélange de 3 purins de plantes</td>
<td>10 cc/hl</td>
<td>50 cc/ha</td>
<td>/</td>
</tr>
</tbody>
</table>

Graphique 2 : Intensité de l’attaque de mildiou sur feuilles intermédiaires (% de surface foliaire avec mildiou)

Les auteurs concluent que « la modalité purins de plantes présente quasiment les mêmes résultats que le témoin. Son efficacité sur mildiou est apparemment nulle ».

Exemple sur pomme de terre primeur avec une attaque forte (SECL-Ctifl en 2000)

Les auteurs concluent : « en année très favorable à la maladie, le cuivre est le premier facteur de réussite. Il semble possible d’en réduire les doses à des niveaux très faibles sans perdre trop d’efficacité. Le mouillant peut contribuer à en réduire le lessivage. […] Les extraits d’algues et les purins de plantes n’ont pas apporté d’amélioration sanitaire vis-à-vis du mildiou ».

Mildiou sur pomme de terre - © M. Javoy

Culture de pomme de terre sans mildiou - © C. Secq
Exemple d’application réalisée sur vigne (ITV 1998) avec une attaque de mildiou moyenne sur grappe et faible sur feuille.
L’idée est de tester l’association des purins avec du cuivre largement sous-dosé.

Tableau V : Modalités comparées sur vigne en 1998

<table>
<thead>
<tr>
<th>Modalité/produit</th>
<th>Dose/ha</th>
<th>Matière(s)/ha active(s)/ha</th>
<th>Cadence (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 BB RSR</td>
<td>15 kg</td>
<td>3 000 g Cu</td>
<td>10-13</td>
</tr>
<tr>
<td>12 Solcuivre YC</td>
<td>1 l</td>
<td>XX</td>
<td>*</td>
</tr>
<tr>
<td>13 BB RSR</td>
<td>2 kg</td>
<td>400 g Cu</td>
<td>*</td>
</tr>
<tr>
<td>15 BB RSR + purin d’ortie</td>
<td>2 kg + 5 l</td>
<td>400 g Cu + ??</td>
<td>*</td>
</tr>
<tr>
<td>16 BB RSR + purin de prêle</td>
<td>2 kg + 20 l</td>
<td>400 g Cu + ??</td>
<td>*</td>
</tr>
<tr>
<td>17 MYCOSIN</td>
<td>6 kg</td>
<td>??</td>
<td>*</td>
</tr>
<tr>
<td>14 TEMOIN</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BB = bouillie bordelaise

Conclusion de l’auteur (49), après une série d’essais sur plusieurs années : « en association avec la bouillie bordelaise, les purins de prêle ou d’ortie ont montré une efficacité moyenne de 30 à 40 % dans un contexte de mildiou normal. En cas de faible pression parasitaire, ils permettent de sous-doser le cuivre. L’efficacité est probablement très dépendante de la matière première et de la préparation ».

Finalement, dans tous les essais sur les maladies fongiques recensés en France, seuls les essais sur vigne ont montré une certaine efficacité des purins d’ortie et de prêle associés au cuivre, sur mildiou et black-rot. Aucune efficacité, si minime soit-elle, n’a pu en revanche être mise en évidence sur les autres maladies fongiques étudiées sur concombre, melon, laitue, tomate, pomme de terre primeur, estragon, artichaut, melon.

Dans la littérature étrangère, on trouve :
- Un travail sur les maladies des petits fruits rouges (anthracnose et septoriose) réalisé à Mikkeli - Finlande (7). La comparaison d’une application en culture d’extrait d’ortie à celle d’un extrait de compost d’origine animale ne montre pas d’écart significatif entre purin et témoin.
- Un travail sur les maladies du radis (alternariose), du pois et du concombre (oïdium) réalisé à Bharatpur – Népal (3). La comparaison d’extraits frais et fermentés d’ortie, ajoutés ou non à de l’urine animale, montre (Tableau VII) un effet positif de l’emploi de l’ortie en culture avec des différences significatives (au seuil de 2 %). Les pulvérisations sont faites sur la base de 450 l/ha de solution finale.

Tableau VII : Effet du purin d’ortie sur le développement des maladies (surface de courbe enveloppe)

| Tableau VI : Résultats de la notation sur grappes du 8.07.98

<table>
<thead>
<tr>
<th>Modalité</th>
<th>MILDIOU</th>
<th>BLACK-ROT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fréquence</td>
<td>Intensité</td>
</tr>
<tr>
<td>11 BB RSR 15 kg</td>
<td>39.7 a</td>
<td>7.0 a</td>
</tr>
<tr>
<td>12 Solcuivre YC 1 l</td>
<td>78.2 c</td>
<td>28.2 c</td>
</tr>
<tr>
<td>13 BB RSR 2 kg</td>
<td>75.5 c</td>
<td>23.5 c</td>
</tr>
<tr>
<td>15 BB RSR 2 + purin d’ortie</td>
<td>64.5 b</td>
<td>15.1 b</td>
</tr>
<tr>
<td>16 BB RSR 2 + purin de prêle</td>
<td>62.3 b</td>
<td>17.7 bc</td>
</tr>
<tr>
<td>17 MYCOSIN 6</td>
<td>71.9 c</td>
<td>17.4 bc</td>
</tr>
<tr>
<td>14 TEMOIN</td>
<td>73.1 c</td>
<td>21.9 c</td>
</tr>
</tbody>
</table>

(Classement statistique selon Newmann & Keuls, au seuil de 5 %, après transformation en arc sin √)

| Tableau VII : Effet du purin d’ortie sur le développement des maladies (surface de courbe enveloppe)

| Effect of nettle extract on foliar diseases development of broadleaf mustard (BLM), radishes, peas, and cucumber in the Western and Far-western hills of Nepal, 2001/02

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Area under disease progress curve (AUDPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM†</td>
<td>Radish†</td>
</tr>
<tr>
<td>Fresh nettle extract in water (20%)</td>
<td>86.79</td>
</tr>
<tr>
<td>Fresh nettle extract in water (10%)</td>
<td>105.74</td>
</tr>
<tr>
<td>Fermented nettle extract in water (20%)</td>
<td>99.25</td>
</tr>
<tr>
<td>Fermented nettle extract in water (10%)</td>
<td>111.63</td>
</tr>
<tr>
<td>Fresh nettle extract in urine (20%)</td>
<td>-</td>
</tr>
<tr>
<td>Fresh nettle extract in urine (10%)</td>
<td>-</td>
</tr>
<tr>
<td>Urine spray (20%)</td>
<td>-</td>
</tr>
<tr>
<td>Control (water spray)</td>
<td>125.33</td>
</tr>
<tr>
<td>P-value</td>
<td>0.00</td>
</tr>
<tr>
<td>CV%</td>
<td>10.25</td>
</tr>
</tbody>
</table>

† means of nine replications across two sites; ‡ means of two replications; ** treatment applied only to cucumber.
L’effet sur le développement des maladies se retrouve au niveau des rendements.
On peut s’interroger sur le mécanisme d’action, si l’on considère le rendement relativement faible du concombre dans la parcelle témoin (Tableau VIII). On peut penser à un déficit d’alimentation azotée, illustré par la performance de l’urine appliquée seule sur concombre ; les différents traitements avec purins et urine viendraient alors compenser en partie ce déficit, renforçant ainsi la croissance des plantes.

Tableau VIII : Effets des traitements sur les rendements

<table>
<thead>
<tr>
<th>Treatments</th>
<th>BLM</th>
<th>Radish</th>
<th>Peas</th>
<th>Cucumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh nettle extract in water (20%)</td>
<td>4.79</td>
<td>1.05</td>
<td>5.20</td>
<td>23.65</td>
</tr>
<tr>
<td>Fresh nettle extract in water (10%)</td>
<td>4.01</td>
<td>1.26</td>
<td>4.94</td>
<td>23.75</td>
</tr>
<tr>
<td>Fermented nettle extract in water (20%)</td>
<td>5.26</td>
<td>1.07</td>
<td>7.74</td>
<td>27.90</td>
</tr>
<tr>
<td>Fermented nettle extract in water (10%)</td>
<td>4.33</td>
<td>1.05</td>
<td>5.41</td>
<td>21.53</td>
</tr>
<tr>
<td>Fresh nettle extract in urine (20%) **</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22.84</td>
</tr>
<tr>
<td>Fresh nettle extract in urine (10%) **</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22.39</td>
</tr>
<tr>
<td>Urine spray (20%) **</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15.80</td>
</tr>
<tr>
<td>Control (water spray)</td>
<td>3.98</td>
<td>0.92</td>
<td>5.01</td>
<td>13.61</td>
</tr>
<tr>
<td>P-value</td>
<td>0.03</td>
<td>0.49</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>CV%</td>
<td>11.45</td>
<td>12.22</td>
<td>15.72</td>
<td>29.56</td>
</tr>
</tbody>
</table>

† Means of nine replications on two sites ; † Means of two replications ; ** Treatment applied only on cucumber

Essais d’efficacité sur bactéries

Tableau IX : Modalités comparées sur bactériose du noyer

<table>
<thead>
<tr>
<th>Stade d'intervention</th>
<th>Modalité 1</th>
<th>Modalité 2</th>
<th>Modalité 3</th>
<th>Modalité 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cf (19 avril)</td>
<td>BB RSR</td>
<td>BB+Elistim</td>
<td>BB +Elistim</td>
<td>Purin Prêle</td>
</tr>
<tr>
<td></td>
<td>(12,5 kg/ha)</td>
<td>(16.25 kg/ha de BB + 500 g/ha d’Elistim)</td>
<td>(dilution 10 %)</td>
<td></td>
</tr>
<tr>
<td>C12/Df (25 avril)</td>
<td>BB RSR</td>
<td>BB+Elistim</td>
<td>BB+Elistim</td>
<td>Purin Prêle</td>
</tr>
<tr>
<td></td>
<td>(12,5 kg/ha)</td>
<td>(16.25 kg/ha de BB + 500 g/ha d’Elistim)</td>
<td>(dilution 10 %)</td>
<td></td>
</tr>
<tr>
<td>Df2/Ef (6 mai)</td>
<td>BB RSR</td>
<td>BB+Elistim</td>
<td>BB+Elistim</td>
<td>Purin Prêle</td>
</tr>
<tr>
<td></td>
<td>(12,5 kg/ha)</td>
<td>(16.25 kg/ha de BB + 500 g/ha d’Elistim)</td>
<td>(dilution 10 %)</td>
<td></td>
</tr>
<tr>
<td>F12/F2 (14 mai)</td>
<td>BB RSR</td>
<td>BB+Elistim</td>
<td>BB+Elistim</td>
<td>Purin Prêle</td>
</tr>
<tr>
<td></td>
<td>(12,5 kg/ha)</td>
<td>(16.25 kg/ha de BB + 500 g/ha d’Elistim)</td>
<td>(dilution 10 %)</td>
<td></td>
</tr>
</tbody>
</table>

BB : bouillie bordelaise, applications sur la base de 400 l/ha
Elistim : stimulateur de la défense des plantes
Des résultats identiques ont été obtenus sur la mesure du calibre des noix.

Après trois années d’essais, les auteurs concluent : « Les résultats n’ont pas été concluants [...] en termes d’efficacité contre la chute des noix, quelle que soit la modalité testée. Le purin de prêle, qui semblait avoir une efficacité [non significative] l’année précédente contre les chutes de noix, n’a pas été différent du témoin non traité en 2009 ».

Essais d’efficacité sur les ravageurs

Les purins de plantes sont utilisés et recommandés pour avoir un effet répulsif sur plusieurs ravageurs.

Dans la littérature étrangère, on note peu de travaux sur l’effet des purins sur les ravageurs. On remarque une étude turque en laboratoire (5), qui conclue que le purin d’ortie n’a pas d’effet dans la lutte contre la mouche blanche (*Trialeurodes vaporariorum*), le tétranyque (acarien) et le pucerón du pois.

Les essais réalisés au champ en France n’ont pas fait l’objet de tests préalables en laboratoire. Ils ont porté sur l’effet du purin de fougère contre les taupins, l’altise et les limaces, ainsi que des purins d’ortie, prêle et fougère contre les pucerons de légumes et des arbus fruitiers.

- **Taupins**

Des essais avec du purin de fougère ont été réalisés sur pomme de terre primeur par la Chambre d’Agriculture du Gard, en situation de forte infestation de taupins (75 à 95 % des tubercules attaqués en parcelle témoin non traité). Au cours des 5 années d’essais (1999 à 2003), les effets du purin de fougère ont été nettement positifs (34, 35, 36, 37, 38).

Tableau X : Modalités comparées en 2003 chez un agriculteur du Gard

<table>
<thead>
<tr>
<th>N°</th>
<th>Modalités</th>
<th>Dose/ha</th>
<th>Date</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Témoin non traité</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mocap 20 + Purin de fougère</td>
<td>30 l</td>
<td>14 avril</td>
<td>Pulvérisation en plein avant plantation avec incorporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 l</td>
<td>tubérisation</td>
<td>Pulvérisation sur les buttes avec 200 l/ha d’eau à la tubérisation</td>
</tr>
<tr>
<td>3</td>
<td>Purin de fougère</td>
<td>20 l</td>
<td>14 avril</td>
<td>Pulvérisation en plein avec 200 l/ha d’eau avant plantation avec incorporation, Ph solution appliquée = 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 l</td>
<td>tubérisation</td>
<td>Pulvérisation sur les buttes avec 200 l/ha d’eau à la tubérisation, Ph solution appliquée = 5.5</td>
</tr>
<tr>
<td>4</td>
<td>Némathorin 10 G</td>
<td>30 kg</td>
<td>14 avril</td>
<td>Granules épandus en plein et incorporés</td>
</tr>
</tbody>
</table>
Tableau XI: Résultats 2003 en % de tubercules attaqués

<table>
<thead>
<tr>
<th>% tubercule</th>
<th>Aucune morsure</th>
<th>Morsure superficielle (<2 mm)</th>
<th>Morsure profonde (<3,5 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>13 C</td>
<td>0</td>
<td>87</td>
</tr>
<tr>
<td>Mocap + PF</td>
<td>70 A</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Purin de fougère</td>
<td>52 B</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>Némathorin 10 G</td>
<td>45 B</td>
<td>0</td>
<td>55</td>
</tr>
</tbody>
</table>

Analyse statistique test de Newman&Keuls (seuil 5%)

- Ecarts-type : 7,05
- C.V en % : 16
- Puissance posteriori en % (seuil 10 %) : 99

L’auteur conclue : « la stratégie associant spécialité chimique à la plantation et pulvérisation de purin de fougère au moment de la tubérisation, s’est avérée être la plus efficace. Le purin de fougère utilisé seul (2 applications) reste une solution intéressante, notamment pour les producteurs en agroécologie. »

Sur la base de ces résultats, d’autres essais ont été réalisés dans d’autres régions sur betterave (54), carotte (50), haricot (56), laitue (31, 32) et pomme de terre primeur (15, 16, 50, 55). Seuls quelques essais sont exploitables, les autres n’ayant pratiquement pas été infestés. Il en ressort que les applications de purin de fougère, quel que soit le mode d’apport (au sol ou sur la végétation), n’ont pas réduit significativement les attaques de taupins. Seules des tendances ont été observées.

Ainsi, les résultats obtenus dans le Gard n’ont pas été reproduits dans les essais ultérieurs en Vaucluse, dans la Manche, en Lot-et-Garonne et en Charente-Maritime.

Exemple de résultats sur pomme de terre primeur en Lot-et-Garonne (50)

Tableau XII : Modalités comparées (Airel-Ctifl 2003)

<table>
<thead>
<tr>
<th>Modalités</th>
<th>Dose/ha</th>
<th>Méthode d’application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Témoin + purin de fougère</td>
<td>40 l/ha</td>
<td>Pulvérisation à 400 l d’eau par ha sur végétation (rampe expérimentale ATH) - pH bouillie : entre 6 et 6.5</td>
</tr>
<tr>
<td>Mocap 10 GRP + purin de fougère</td>
<td>38 kg/ha</td>
<td>Micro-granulés localisés sur 24 cm**</td>
</tr>
<tr>
<td>Mocap 10 GRP + purin de fougère</td>
<td>38 kg/ha</td>
<td>Micro-granulés localisés sur 24 cm**</td>
</tr>
</tbody>
</table>

*La dose homologuée du Mocap 10 GRP est de 60 kg/ha, mais la conception du localisateur dont était équipé la planteuse ne nous a pas permis d’aller au-delà de 38 kg.

**Le localisateur est positionné après l’ouverture de la butte et épand le micro-granulé sur une largeur de 24 cm au sol.

Tableau XIII : Résultats en % de tubercules attaqués

<table>
<thead>
<tr>
<th>Modalités</th>
<th>% de tubercules attaqués</th>
<th>Efficacité des traitements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>27.7</td>
<td>/</td>
</tr>
<tr>
<td>Témoin + purin de fougère</td>
<td>28.2</td>
<td>0 %</td>
</tr>
<tr>
<td>Mocap</td>
<td>13</td>
<td>20.3%</td>
</tr>
<tr>
<td>Mocap + purin de fougère</td>
<td>13.6</td>
<td>18.1%</td>
</tr>
</tbody>
</table>

Les auteurs concluent que « les applications de purin de fougère à 56, 70 et 82 jours après plantation n’ont pas limité l’attaque des taupins », qui est modérée dans le cas de cet essai.

Ces résultats contradictoires n’ont pas trouvé d’explication. On notera cependant que seuls les essais dans le Gard étaient réalisés en situation de forte infestation.

Le fabricant du purin de fougère (J3C Agri) insiste sur la nécessité d’avoir une eau acide (pH 6) et non chlorée. Cette obligation, contraignante pour la pratique agricole, a conduit les producteurs de pommes de terre du Gard à préférer la protection par piégeage massif des taupins adultes, grâce à une phéromone de synthèse maintenant disponible.
Limaces

Deux essais (11, 12) ont été réalisés sur laitue en 2002 et 2004 en Rhône-Alpes, comparant le purin de fougère aux appâts de métaldéhyde et à l'orthophosphate de fer, au champ et en conditions contrôlées.

Exemple de résultats en conditions contrôlées (cages) (Serail-Acta 2004)

Tableau XIV : Modalités comparées

<table>
<thead>
<tr>
<th></th>
<th>Métaldéhyde en appât</th>
<th>Purin de fougère</th>
<th>Orthophosphate de fer</th>
<th>Placebo de Métarex</th>
<th>Métaldéhyde en bande</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 x 18 g de granulé Métarex (De Sangosse)/m², placé dans un tube PVC.</td>
<td>Purin de fougère (origine J 3C Agri), concentration 10 %, traitement 10.0 ml à 10 %/m².</td>
<td>Orthophosphate de fer : 5 g/m² de produit commercial Ferramol.</td>
<td>Placebo de Métarex (granulé sans matière active) : 5 g/m²</td>
<td>Métaldéhyde en bande : 4 bandes/m² de 9 granulés de Métarex collés sur une bande de papier</td>
</tr>
</tbody>
</table>

Tableau XV : Résultats sur la mortalité des limaces

<table>
<thead>
<tr>
<th></th>
<th>% limaces mortes à J +2</th>
<th>% limaces mortes à J +5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Métaldéhyde en bandes</td>
<td>22 A 66 A</td>
<td></td>
</tr>
<tr>
<td>Métaldéhyde en appât</td>
<td>11 B 20 B</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate de fer</td>
<td>3 BC 21 B</td>
<td></td>
</tr>
<tr>
<td>Témoin non traité</td>
<td>1 C 1 C</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>0 C 0 C</td>
<td></td>
</tr>
<tr>
<td>Purin de fougère</td>
<td>0 C 1 C</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion des auteurs : « le purin de fougère n’a montré aucune efficacité dans la lutte contre les limaces. »

On notera par ailleurs l’intérêt de disposer le métaldéhyde sur bandes de papier, conformément au cahier des charges AB à cette date (granulés isolés du sol et de la plante).
Altise du radis
Un essai (22) a été réalisé en 2002 à la Serail avec du purin de fougères.

Tableau XVI: Modalités testées sur altise

- Témoin non traité
- Protection mécanique : Filbio
- Pulvérisation de purin de fougères (100 ml/1 L) à 200 L/ha tous les 3 jours
- Karaté zéon (5 g/ha) : application tous les 5 jours (DAR : 7 jours), 300 L/ha
- Karaté zéon (5 g/ha) : application tous les 3 jours (DAR : 7 jours), 300 L/ha
- Magéos (50 g/ha) tous les 3 jours (DAR : 14 jours), 600 L/ha

Graphique 5: Résultats des dégâts sur le feuillage

Le purin d’ortie est pulvérisé sur la base de 600 L/ha.

Dans cet essai, les voiles ont largement favorisé les pucerons, du double fait d'une infestation initiale avant la pose du voile et d'une atmosphère plus chaude, favorable à leur prolifération. Avec le purin d'ortie, on note juste un léger retard d'infestation par rapport au témoin. À la récolte, il n'y a pas de différences significatives, les auxiliaires ayant fait leur travail.

Pucerons des arbres fruitiers
Des essais sont été réalisés sur mirabelier (13, 14), pêcher (39) et pomme (40) avec des préparations à base d'ortie, de fougère et de préle. Dans les cas des essais sur pêcher et sur pomme, les préparations étaient fraîches, et non pas achetées dans le commerce.

Exemple de résultats sur pêcher (Grab-Serfel 2003)
Tableau XVIII : Modalités comparées sur pêcher

<table>
<thead>
<tr>
<th>Modalités</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT : Témoin non traité</td>
<td></td>
</tr>
<tr>
<td>TE : Témoin eau (pH 6)</td>
<td></td>
</tr>
<tr>
<td>O : Infusion d’ortie fraîche (15kg / 10l d’eau à pH 6 ; 10l de préparation / 100l d’eau de pH 6 / ha)</td>
<td></td>
</tr>
<tr>
<td>PF : Purin de fougère (100l / 1000l d’eau de pH 6 / ha)</td>
<td></td>
</tr>
<tr>
<td>PFL : Purin de fougère + lithothamne (100l / 1000l d’eau de pH 6 / ha + 5kg/1000l d’eau/ha)</td>
<td></td>
</tr>
<tr>
<td>PFLPP : Purin de fougère + purin de prêle + lithothamne (idem PFL + 200l / 1000l d’eau de pH 6 / ha pour le purin de prêle)</td>
<td></td>
</tr>
<tr>
<td>I : Isothérapie (760ml de la préparation 200K / 610l d’eau de pH 6 / ha)</td>
<td></td>
</tr>
</tbody>
</table>

Graphique 6 : Résultats sur l’infestation de pucerons

Les auteurs concluent : « après analyse statistique des résultats, sur toute la durée de l’essai ou sur chacune des quatre semaines, aucune efficacité significative n’a pu être mise en évidence. Si l’on observe la première semaine de traitement, avant la diminution naturelle des pucerons, les trois traitements à base de purins et le témoin eau ont induit une chute intéressante du nombre de pucerons. L’infusion d’ortie ne semble pas être efficace. »

De plus, « l’efficacité des traitements sur l’évolution des populations de pucerons noir est délicate à interpréter, du fait de la diminution « naturelle » du nombre de pucerons sur le témoin non traité » (impact des auxiliaires).

De l’ensemble des essais sur les ravageurs, on retiendra l’idée que les effets des purins de plantes sont difficiles à mettre en évidence. Ils sont au mieux très ténus, voire inexistants : dans les meilleurs cas, on note de légers retards d’infestation (puucerons), avec une compensation fréquente par des auxiliaires naturels. Cependant, on gardera présents à l’esprit les résultats contradictoires sur taupins : des effets nettement positifs ont été obtenus de façon constante pendant cinq années dans le Gard, mais ceux-ci n’ont pu être reproduits ailleurs.

Essais d’efficacité en tant que fertiliants ou biostimulants

Les purins de plantes sont préconisés et utilisés comme compléments de fertilisation dans de nombreux cas. La littérature abonde en références de recommandations, mais peu s’adossent à des expérimentations au champ. Si l’on fait abstraction des essais de compost incluant entre autres de l’ortie, on retiendra une étude américaine (2) réalisée pendant 6 ans dans le Wisconsin. L’objectif en était de vérifier l’efficacité de pulvérisations d’une préparation biodynamique enrichie sur des cultures de blé et de maïs. Cependant, la composition de cette préparation enrichie (E) ne permet pas de faire la part du purin d’ortie pris isolément : elle est faite en effet à partir d’un mélange fermenté de fumier de vache, de camomille, d’ortie, d’achillée, d’écorce de chêne, de pissenlit et de valériane.

Tableau XIX : Modalités de fertilisation comparées sur maïs et blé

<table>
<thead>
<tr>
<th>Modalités</th>
<th>Modes de fertilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin (Conventional)</td>
<td>Minéral 169 N - 112 P - 112 K</td>
</tr>
<tr>
<td>« Organic »</td>
<td>Rotation sur 6 ans incluant une luzerne et l’apport avant maïs de 22 t/ha de fumier de mouton</td>
</tr>
<tr>
<td>BD (biodynamique)</td>
<td>Idem « organic » + préparation biodynamique à base de corne + silice</td>
</tr>
<tr>
<td>BD+</td>
<td>Idem BD + 2 apports de la préparation enrichie E</td>
</tr>
</tbody>
</table>

La présence de fumier de vache dans la macération laisse supposer une teneur de la préparation non négligeable en azote, mais ceci n’est pas précisé par les auteurs.

Graphique 7 : Effets des modes de fertilisation sur le poids racinaire du maïs

Legendre_5-6/21
Les auteurs ont observé un effet positif de la modalité comportant deux pulvérisations de la préparation biodynamique E en culture et l’effet était d’autant plus marqué que le rendement du témoin était faible. On notera toutefois que l’écart entre BD et BD+ n’est pas significatif (graphique 7).

Les auteurs concluent à un effet régulateur des préparations biodynamiques sur le rendement, grâce à un accroissement du volume racinaire.

Dans cette étude, le purin d’ortie a été dans un premier temps acheté, puis produite par les expérimentateurs eux-mêmes. Le choix de ne plus s’approvisionner chez le fabricant en purin était justifié du fait que la préparation contenue dans le bidon ne contenait que des quantités d’azote total et d’ammoniacal infinitésimales et aucune forme d’azote nitrique.

Graphique 7 : Composition du purin d’ortie fabriqué

Ce purin d’ortie est principalement caractérisé par l’absence d’azote nitrique et sa faible teneur en azote total. La majeure partie de l’azote est présente sous forme organique. On observe une légère augmentation dans le temps de la concentration en azote ammoniacal qui peut provenir de la minéralisation de l’azote organique.

Le purin d’ortie n’apporte donc que peu d’azote facilement assimilable.

Les essais d’emploi du purin d’ortie comme fertilisant ou biostimulant ont porté sur :

- La préparation des plants : essais de pralinage des plants d’artichaut (47), de chou-fleur (45, 46), de poireau (44).
- La fertilisation en cours de culture en complément de la fertilisation de départ, soit en pulvérisation foliaire, soit par le goutte-à-goutte : essais sur aubergine (52), courgette (51), fraisier (8), melon (53).

- Essais de préparation des plants

Exemple de résultats d’essai de pralinage d’œillettons d’artichaut, SECL-Ctifl 2000

Tableau XX : effet du purin d’ortie en pralinage sur le rendement d’artichaut

<table>
<thead>
<tr>
<th>Modalités</th>
<th>% récolte</th>
<th>Rendement T / ha</th>
<th>Poids moyen en g</th>
<th>Nombre de capitules par touffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purin ortie</td>
<td>98</td>
<td>4.83</td>
<td>117</td>
<td>3.34</td>
</tr>
<tr>
<td>Témoin</td>
<td>94</td>
<td>4.98</td>
<td>116</td>
<td>3.47</td>
</tr>
<tr>
<td>Bactériosol</td>
<td>96</td>
<td>4.89</td>
<td>114</td>
<td>3.47</td>
</tr>
</tbody>
</table>

Il n’y a pas d’effet significatif.

- Essais de complément de fertilisation

Exemple d’essai sur fraisier en irrigation par goutte-à-goutte (Ctifl 2004)

En fertilisation de complément, les fraisiers, sous abri, reçoivent selon les modalités : du purin d’ortie, de l’engrais liquide Orgaflor (25 g/l d’azote), de la vinasse de betterave (70 heures/l d’azote). Chaque modalité dispose d’un témoin adjacent non fertilisé.

Graphique 9 : Effet du mode de refertilisation sur le rendement du fraisier

Répartition des rendements fin juin 2004
Globalement, il n'y a pas d'impact significatif des purins de plantes dans les essais de fertilisation, qu'ils soient utilisés pour le pralinage des plants ou pour la fertilisation de complément (pulvérisation foliaire, goutte-à-goutte).

Les auteurs concluent que : « les essais réalisés par pulvérisation ou par injection dans le goutte-à-goutte n'ont pas donné de résultats significatifs, indépendamment des difficultés de bouchage rencontrées. »

Conclusion

Les essais de purins de plantes, répertoriés ici, ont débuté à la fin des années 1990 tant en France qu'à l'étranger.

Les essais sur taupins de la pomme de terre, réalisés à partir de l'année 1999 dans le Gard, ont suscité aussi un vif intérêt, puisqu’en situation de forte infestation, le purin de fougère a montré une efficacité intéressante sinon satisfaisante et régulière pendant plusieurs années. Cependant, pour des essais répétés dans d'autres régions de production, ces résultats n'ont pas pu être reproduits, ni sur pomme de terre ni sur d'autres cultures (carotte, betterave, haricot, laitue). D'autres essais pour protéger les fruits et légumes contre des ravageurs - pucerons, limaces, altise - ont été réalisés. Les effets s'avèrent limités, laissant entrevoir au mieux un léger retard d'infestation pour les pucerons, qui s'estompe rapidement sous l'action des auxiliaires naturels.

Au final, il est frappant de constater l'écart entre les effets mesurés – nuls, ténus et/ou aléatoires – et les recommandations des prescripteurs de la profession sur l'emploi des purins.

On notera d'ailleurs que les expérimentations professionnelles s'orientent désormais prioritairement vers d'autres types de substances pour améliorer la nutrition des végétaux (stimulateurs de développement des plantes), pour améliorer la protection des cultures, comme les stimulateurs de défense naturelle (SDN) et, bien sûr, vers d'autres méthodes alternatives aux produits chimiques de synthèse, telles que : variétés résistantes aux maladies, grefage, barrières physiques (filet, film, argile), auxiliaires naturels ou introduits, piégeage massif avec phéromones.
Fiche technique purin d’ortie (J3C Agri)

Le purin d’ortie est une macération d’ortie dans de l’eau.

Type de MP: orties

Conditionnement: Bidon de 25 l sous forme liquide, conservation du bidon 15 jours après ouverture, conservation +5 °C - 25 °C

Utilisation: Pulvérisation foliaire
- Solution fertilisante 10 l dans 200 l/ha.
- L’eau de traitement doit être faite avec de l’eau NON TRAITÉE, pH 5,5 à 6,5.
- Utiliser de l’eau de pluie, de forage ou de source.

Analyse physique

<table>
<thead>
<tr>
<th></th>
<th>SEC</th>
<th>BRUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td></td>
<td>0,29 %</td>
</tr>
<tr>
<td>MO</td>
<td>51,72</td>
<td>0,15 %</td>
</tr>
<tr>
<td>M minérale</td>
<td>48,28</td>
<td>0,14 %</td>
</tr>
<tr>
<td>Carbone organique (C)</td>
<td>258,6</td>
<td>0,75 (g/kg)</td>
</tr>
</tbody>
</table>

Analyse minérale en %

<table>
<thead>
<tr>
<th></th>
<th>SEC</th>
<th>BRUT</th>
<th>POIDS</th>
<th>VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N total Kjeldahl</td>
<td>41,38</td>
<td>0,12</td>
<td>6,3</td>
<td>700 mg/l</td>
</tr>
<tr>
<td>Rapport C/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphore total</td>
<td>24,14</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium total</td>
<td>137,93</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnésium total</td>
<td>27,59</td>
<td>0,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium total</td>
<td>89,68</td>
<td>0,28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soufre total</td>
<td>24,14</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En ppm : mg/kg

<table>
<thead>
<tr>
<th></th>
<th>SEC</th>
<th>BRUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>83,1</td>
<td>8 mg/l</td>
</tr>
<tr>
<td>Mn</td>
<td>< 13,79</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>< 13,79</td>
<td>1,34 mg/l</td>
</tr>
<tr>
<td>Zn</td>
<td>< 13,79</td>
<td>1,35 mg/l</td>
</tr>
<tr>
<td>Bo</td>
<td>103,46</td>
<td></td>
</tr>
</tbody>
</table>

Dosage recommandé: 10 l de purin d’ortie / 200 l d’eau par hectare.
BIBLIOGRAPHIE ÉTRANGÈRE

(1) Anastasiah A. N., Ndalut P. K.
Evaluation of natural products as possible alternatives to methyl bromide in soil fumigation.

(2) Goldstein W.A., Barber W.
Yield and root growth in a long term trial with biodynamic preparations (Wisconsin, USA)

(3) Khanal N., Joshi K.D., Harris D. and Chand S.P.
Effect of micronutrient loading, soil application, and foliar sprays of organic extracts on grain legumes and vegetable crops under marginal farmers’ conditions in Nepal

(4) Li T. S. C.
Use of stinging nettle as a potential organic fertilizer for herbs.

(5) Madanlar N., Yoldas Z., Durmusoglu E.
Laboratory investigations on some natural pesticides for use against pests in vegetable greenhouses.
IOBC/WPRS Working Group « Integrated Control in Protected Crops, Mediterranean Climate ».
Proceedings of the meeting, Antalya, Turkey, 24-28 April 2000.

Researches concerning pest and diseases control in organic pomiculture.

Leaf spot diseases on currants in Finland: their significance and control by organic methods and fungicides.

BIBLIOGRAPHIE FRANÇAISE

(8) Bardet A., Robert N.
Production de fraise remontante en agriculture biologique: étude de fertilisants organiques et de refertilisation en cours de culture.

(9) Bergeon F.
Protection biologique contre les maladies foliaires du poireau.

(10) Berry D.
Ail en agriculture biologique - Lutte contre la rouille.

(11) Berry D., Thicoipé J.-P.
Laitue bio; lutte contre les limaces.

(12) Berry D., Chabert A.
Lutte contre les limaces en maraîchage biologique, test de différents produits [sur laitue].
Compte-rendu Serail- Acta 2004
In Actes des Journées Techniques fruits et légumes biologiques, Tours 30 novembre – 1er décembre 2004, pp 87-90.

(13) Besançon T.
Utilisation du purin d’ortie sur mirabellier.

(14) Besseyrias L.
Utilisation du purin d’ortie sur mirabellier.
(15) Bouvard D., Conte C., Lhote J.-M. & al.
Pomme de terre primeur ; lutte contre les larves de taupins.
Compte-rendu Acpel 2004

Pomme de terre primeur ; lutte contre les larves de taupins.
Compte-rendu Acpel 2005

(17) Bruyère J., Dupuis B., Derycke C. & al.
Bilan des expérimentations conduites sur la pomme de terre [mildiou].
Compte-rendu du projet VETAB

(18) Chevallier A., Laymajoux D.

(19) Chevallier A.
Compte-rendu Station de Creysse-Ctifl 2008.

(20) Clerc H., Lanave J. L., Doche N.
Essai de lutte contre le Bremia en agrobiologie sous tunnel.
Compte-rendu Airel 2002

(21) Demeusy J., Berry D.
Tomate d’été : actions fongiques de la préle.

(22) Didier P., Thicoipé J.-P.
Radis d’automne, lutte contre les altises.
Compte-rendu Serail-Ctifl 2002

(23) Dubois-Dunilac M.
Essai oïdium – artichaut en agriculture biologique.

(24) ITEPMAI
Agriculture biologique ; lutte contre la rouille de la menthe et la rouille de l’estragon.
In Compte-rendu technique Itепmai, 2005

(25) Lambion J., Bellec A.-G.
Lutte contre le mildiou en culture de concombre biologique.
Compte-rendu Grab, 2005.

(26) Lambion J., Raoux L.
Lutte contre le mildiou en culture de concombre biologique.

(27) Lambion J., Raveau J., Mazollier C.
Lutte contre pucerons verts sous abris : test de produits biologiques sur courgette.

(28) Lambion J., Mazollier C., Girardet C. & al.
Lutte contre le mildiou de la laitue sous abri : test de produits biologiques.

(29) Lambion J., Mazollier C., Girardet C.
Lutte biologique contre oïdium sur cucurbitacées.
Compte-rendu Grab, 2002.

(30) Lepaumier B., Bourdet D., Bellamy P.
Laitue en agriculture biologique : protection contre les pucerons.

(31) Lepaumier B., Bourdet D., Lefebvre A., Bosc J.-P.
Agriculture biologique : protection contre les taupins en culture de laitue.

(32) Lepaumier B., Bourdet D., Lefebvre A., Bosc J.-P.
Agriculture biologique : protection contre les taupins en culture de laitue.

(33) Molot B., Lanthiome D.
Étude de l’efficacité de purins de prêle et d’ortie en station de brumisation vis-à-vis de P. viticola.

(34) Nouet Y.
Pomme de terre primeur, lutte contre les taupins.

(35) Nouet Y.
Pomme de terre primeur, lutte contre les taupins.

(36) Nouet Y.
Pomme de terre primeur, lutte contre les taupins : stratégie de lutte.
(37) Nouet Y.
Pomme de terre primeur, lutte contre les taupins : stratégie de lutte.

(38) Nouet Y.
Pomme de terre primeur, lutte contre les taupins (stratégie de lutte).

(39) Ondet S.-J.
Stratégie de maîtrise du puceron noir du pêcher.

(40) Ondet S.-J.
Stratégie de maîtrise du puceron vert du pommier par phytothérapie.

(41) Peroys J.-L., Pages G., Prunet J.-P.
Stimulation de la vitalité et des performances du noyer.

(42) Picault S., Fouyer L.
Screening de produits anti-mildiou à base d’extraits naturels en culture de laitues d’automne sous abri.

(43) Picault S., Fouyer L.
Evaluation de l’efficacité de produits alternatifs sur le mildiou Bremia lactucae en culture de laitues de printemps.

(44) Porteneuve C., Crenn J., Guillerm J.
Cahier des charges AB : production de plants [de poireau].

(45) Porteneuve C., Crenn J., Moulin F., Gillerm J.
Chou-fleur en agriculture biologique : production de plant en minimitotte.

(46) Porteneuve C., Crenn J., Moulin F., Gillerm J.
Chou-fleur en agriculture biologique : production de plant en minimitotte.

(47) Porteneuve C., Moulin F., Guillerm J.
Essais pralinage et activateur biologique – Artichaut Camus et Violet de Provence en agriculture biologique.

(48) Porteneuve C., Moulin F., Guillerm J.
Pomme de terre primeur : essai de lutte contre le mildiou en AB.

(49) Proust I.
Mildiou Oïdium : des pistes alternatives aux fongicides classiques.
Viti-net 9 septembre 2009.

(50) Sclaunich E., Poissonnier J.
Pomme de terre primeur ; essai lutte taupin.

(50) Siri F.
Carotte : utilisation du purin de fougère pour lutter contre le taupin.

(51) Vedie H.
Diagnostic de fertilité de sol en maraîchage biologique [courgette].

(52) Vedie H., Mazollier C.
Optimisation de la fertilisation en culture biologique d’aubergine sous abri.

(53) Vedie H., Mazollier C.
Fertilisation en cours de culture de melon sous abri en maraîchage biologique.

(54) Vedie H., Taulet A.
Lutte contre les taupins avec des tourteaux végétaux et purin de plantes [sur betterave potagère].

(55) Vedie H., Taulet A.
Lutte contre les taupins avec des tourteaux végétaux et purins de plantes [sur pomme de terre].
Compte-rendu Grab, 2002.

(56) Vedie H., Taulet A., Blot Y.
Lutte contre les taupins avec des tourteaux végétaux et purin de plantes [sur haricot coco].

REGARD DU CONSEIL SCIENTIFIQUE

Dorion N., Mouchotte J.
Jardiner avec la lune : mythe ou réalité ?, SNHF, 2012
Action pilotée par le ministère chargé du développement durable, avec l’appui financier de l’Office national de l’eau et des milieux aquatiques, par les crédits issus de la redevance pour pollutions diffuses attribués au financement du plan Ecophyto.

Site Internet

Pour en savoir plus : www.snhf.org
Protection des plantes, tradition et macération d’ortie

La Société Nationale d’Horticulture de France s’est dotée d’un conseil scientifique, pour faciliter l’accessibilité des connaissances scientifiques et techniques susceptibles d’accompagner le développement de l’horticulture et du paysage.

Ce conseil mobilise les compétences de l’interprofession et de la recherche sur les questions touchant à la biologie, à la nature. Il a pour mission d’aider à « mieux comprendre pour mieux agir » et le souhait d’informer de façon objective sur les thèmes d’actualité.

Le conseil souhaite apporter à la SNHF et toutes ses instances des réponses scientifiquement fondées aux questions qu’elles se posent en déclinant ses compétences des sciences fondamentales aux applications, il veut être une courroie de transmission avec tous les utilisateurs des connaissances : professionnels, enseignants, étudiants, amateurs et jardiniers éclairés.

Un groupe de travail auquel participent plusieurs membres du conseil scientifique a mis en place un service de réponses aux questions (HortiQuid), sur le site de la SNHF (www.jejardine.org). Ce service mobilise les compétences d’une centaine d’experts. Dans le même esprit, le conseil scientifique traite régulièrement de thèmes d’actualité.

En 2012, Protection des plantes, tradition et macération d’ortie est le second dossier de la série Regard du conseil scientifique.